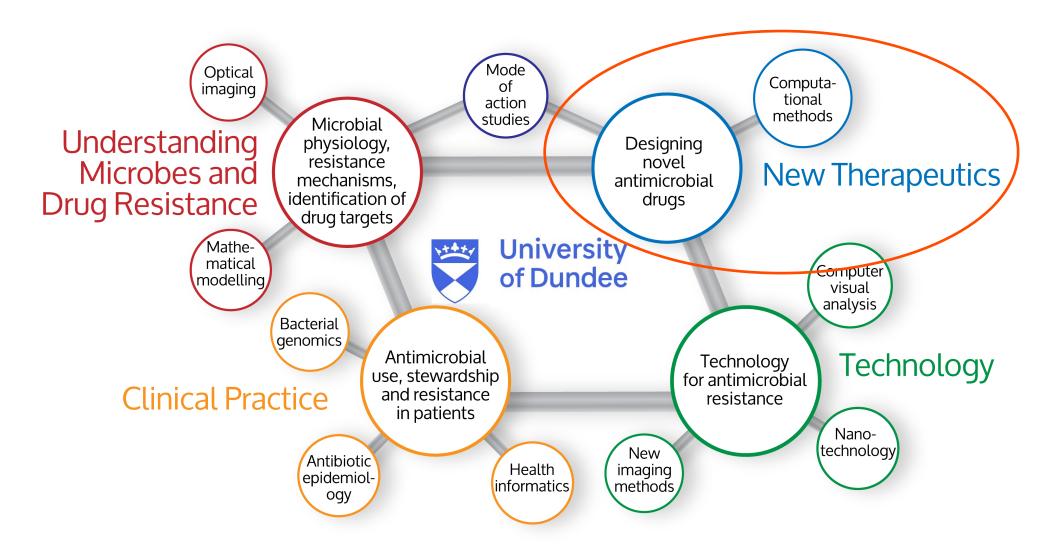
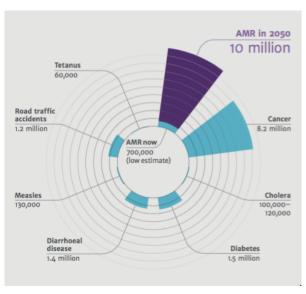

Ian Gilbert

Drug Discovery to Combat GNB Infections: current challenges and possible progress


Ian Gilbert & Mike Ferguson
Wellcome Centre for Anti-Infectives Research
School of Life Sciences

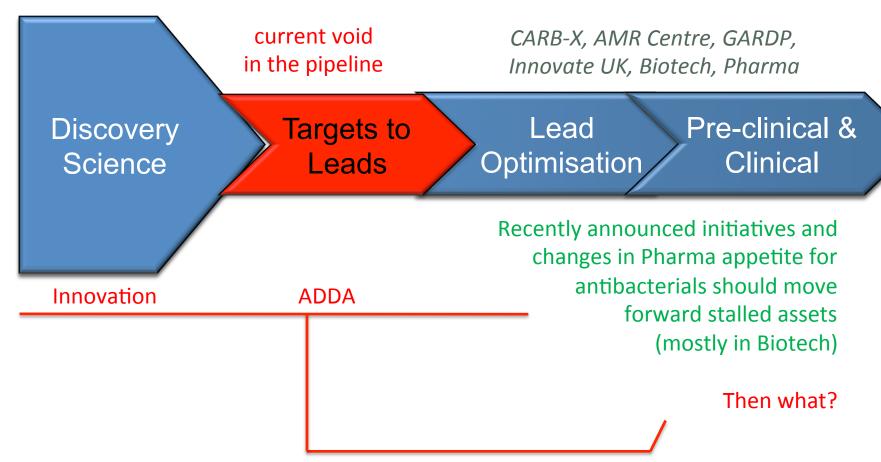
University of Dundee: Centre for Antimicrobial Resistance

University of Dundee: Centre for Antimicrobial Resistance



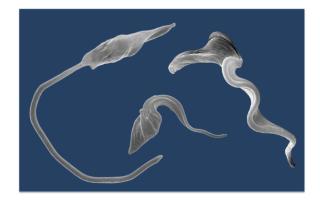
Creating an Antibacterial Drug Discovery Accelerator

O'Neill Report, 2015


Four parallel, interacting, pillars of activity are necessary to tackle AMR

University ADDA concept in context:

Universities supported by funding agencies
(MRC, BBSRC
Wellcome, BSAC others)



The Drug Discovery Unit

- A "Biotech company" within a university
 - With better equipment and facilities
 - Current funding streams ~£35 million (£ 7m pa)
 - Biopharma industry drug discovery experienced team, 95 people
 - From companies including AstraZeneca, Merck (MSD), GSK, Pfizer, Novartis
- Combines excellence in basic science with biopharma industry expertise
- Complements the pharmaceutical industry
 - Diseases of the Developing World (tropical & orphan)
 - Innovative Targets Portfolio (new approaches for tackling major diseases)

Management Team

Paul Wyatt Head Of DDU & Director CAIR

- 11 years in the DDU
- 23 years in BioPharma
- 7 pre-clinical and 3 clinical candidates

Ian Gilbert **Head of Med Chem**

- 11 years in the DDU
- 1 year in BioPharma
- 13 years in academia
- Led team to develop malaria candidate

Susan Wyllie **Head of Mode of Action**

• 2 years in the DDU

Discovery

Unit

• 13 years in academia

David Gray Head of Biology, Innovative Targets Portfolio Manager

- 7 years in the DDU
- 15 years in BioPharma
- 10 pre-clinical, 10 clinical candidates and 1 marketed drug

Head of DMPK, Animal Models

• 10 years in the DDU

Kevin Read

- 18 years in BioPharma
- 6 pre-clinical and 4 clinical candidates

Andrew Woodland Portfolio Manager, **Dermatology**

- 9 years in the DDU
- 5 year in BioPharma

Julie Brady **Business Development Manager**

- 4 years in DDU
- 14 years in commercialisation

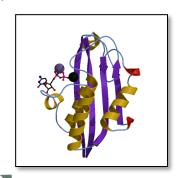
Louise Burns Finance Officer

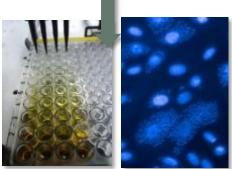
- 4 years in DDU
- 6 years industry experience
- Chartered Accountant

ADDA: will build on existing infrastructure

Target Selection

Validation Druggability Assay Feasibility **Toxicity** Resistance potential Structural Information

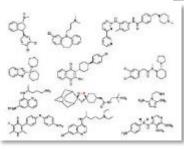


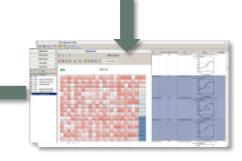


384 MTS/HTS Robotics

Compound Sets

DMPK


in vitro models


Target or cell screen

in vivo models

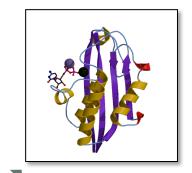
Medicinal & Computational Chemistry

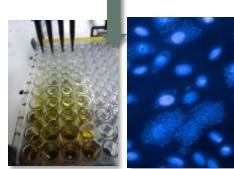
Data Management



ADDA: will build on existing infrastructure

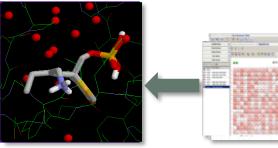
Target Selection


Validation Druggability Assay Feasibility **Toxicity** Resistance potential Structural Information



Compound Sets

384 MTS/HTS Robotics



DMPK

in vitro models

Structural Biology

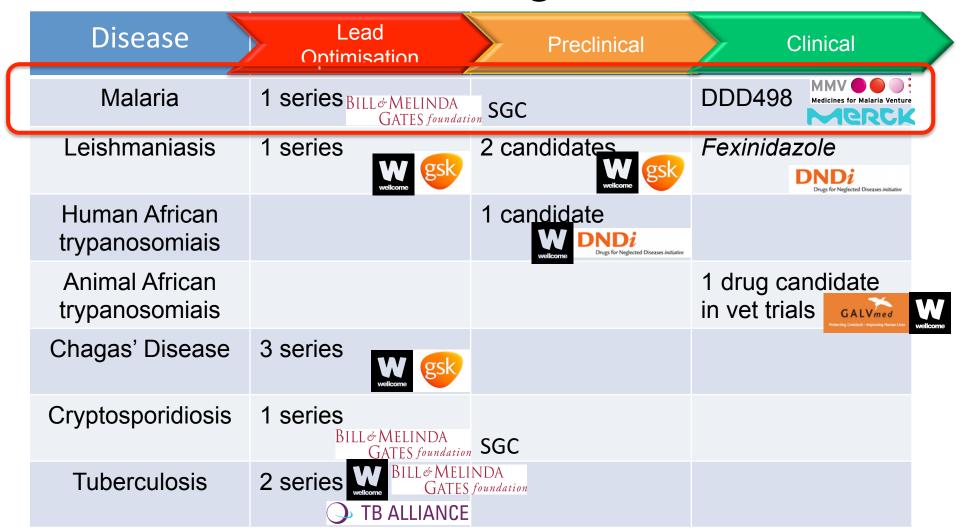
Target or cell screen

in vivo models

Medicinal & Computational Chemistry

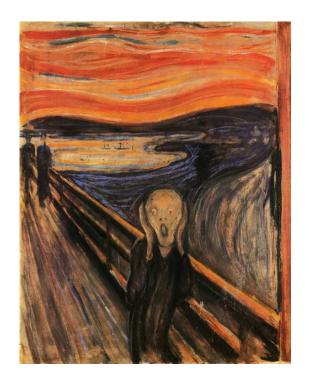
Data Management

First ADDAdedicated Funding: Innovate UK AMR Competition 2016 £870k to extend labs for ADDA medicinal chemistry



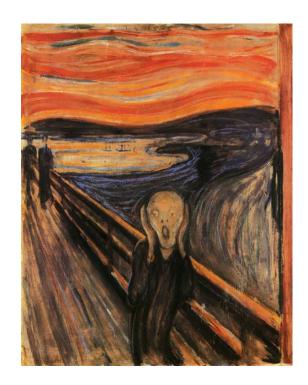
Track record as an infectious diseases drug accelerator

Disease	Lead Optimisation	Preclinical	Clinical
Malaria	1 series BILL & MELINDA GATES foundati	sgc	DDD498 MMV
Leishmaniasis	1 series	2 candidates	Fexinidazole DNDi Drugs for Neglected Diseases initiative
Human African trypanosomiais		1 candidate Westcome DNDi Drugs for Neglected Diseases initiative	
Animal African trypanosomiais			1 drug candidate in vet trials
Chagas' Disease	3 series wellcome		
Cryptosporidiosis	1 series BILL MELINDA GATES foundation	, SGC	
Tuberculosis	A corios VV BILL&MELI	NDA foundation	



Track record as an infectious diseases drug accelerator

Multi-parametric optimisation problem


Increase drug potency – the desired effect of the drug
Increase drug solubility & volume of distribution – necessary to get the drug into the body
Reduce drug toxicity – the undesired effect(s) of the drug
Adjust drug metabolism – how quickly the body eliminates the drug

Multi-parametric optimisation problem

Increase drug potency – the desired effect of the drug
Increase drug solubility & volume of distribution – necessary to get the drug into the body
Reduce drug toxicity – the undesired effect(s) of the drug
Adjust drug metabolism – how quickly the body eliminates the drug

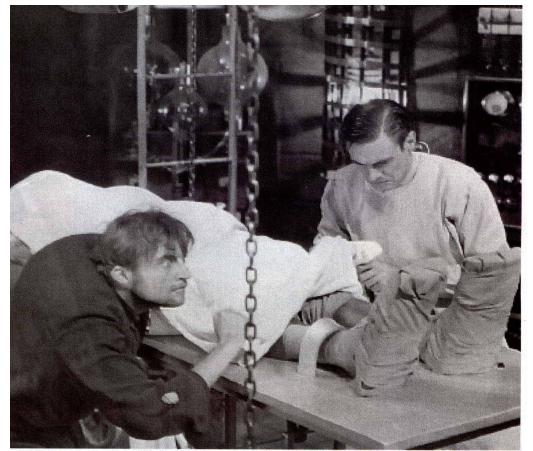

The Hit to Lead and Lead Optimisation processes involve

Chemists "splicing together" new molecules that contain

desirable features and eliminate undesirable features.

Biologists then test them and, together, they design

the next round of compounds.


The Hit to Lead and Lead Optimisation processes involve

Chemists "splicing together" new molecules that contain

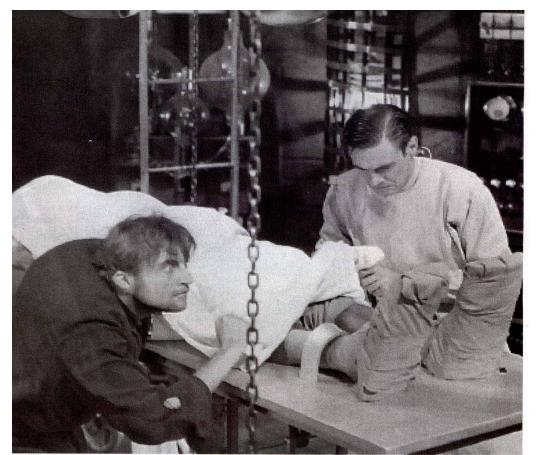
desirable features and eliminate undesirable features.

Biologists then test them and, together, they design

the next round of compounds.

Chemist

Biologist


The Hit to Lead and Lead Optimisation processes involve

Chemists "splicing together" new molecules that contain

desirable features and eliminate undesirable features.

Biologists then test them and, together, they design

the next round of compounds.

Biologist

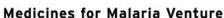
Chemist

	Br N	F N N	F N N	F N N N N N N N N N N N N N N N N N N N
	0.12	0.35	0.70	0.05
Potency	418	357	377	430
Solubility	4.3	3.7	3.7	2.1
Solubility		36	180	>230
Metabolism	5.3	8.6	3.4	0.8
		97.2		59

	Br O H N	F O H N	F N N	F N N N N N N N N N N N N N N N N N N N
	0.12	0.35	0.70	0.05
Potency	418	357	377	430
Calubili+v	4.3	3.7	3.7	2.1
Solubility		36	180	>230
Metabolism	5.3	8.6	3.4	0.8
		97.2		59

	Br O H N	F O H N	F O H N	F N N N O
	0.12	0.35	0.70	0.05
Potency	418	357	377	430
Solubility	4.3	3.7	3.7	2.1
Solubility		36	180	>230
Metabolism	5.3	8.6	3.4	0.8
		97.2		59

	Br N (F O H N	F O H N	F N N N N O
	0.12	0.35	0.70	0.05
Potency	418	357	377	430
Solubility	4.3	3.7	3.7	2.1
Solubility		36	180	>230
Metabolism	5.3	8.6	3.4	0.8
		97.2		59



International collaborations with expert parasitologists

Partnership with the Medicines for Malaria Venture

ARTICLE

doi:10.1038/nature14451

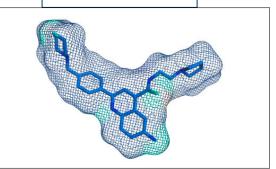
A novel multiple-stage antimalarial agent that inhibits protein synthesis

Beatric Baragaña¹, Irene Hallyburton¹, Marcus C. S. Lee²t, Neil R. Norcross¹, Raffaella Grimaldi¹, Thomas D. Otto³, William R. Proto³, Andrew M. Blagborough¹, Stephan Meister³, Gremandy Wirjinata², Andrea Ruecker⁴, Leanna M. Upton⁴, Tars S. Abraham², Mariana J. Almeida², Anupam Pradhan³, Achim Porzelle⁴, Maria Santos Martinae³, Pudith M. Bolscher³, Andrew Woodland⁴, Suzame Novral⁴, Fabio Zuccotto¹, John Thomas³, Frederick Simonos³, Laste Stojanoski⁴, Maria Belen Jiménez-Diaz⁸, Maria Osuna-Cabello¹, Paddy M. Brock⁴, Tom S. Churcher⁴, Katarzyna A. Sala⁴, Sara E. Zakutansky⁴, Maria Belen Jiménez-Diaz⁸, Laura Maria Sanz⁸, Jennifer Riley⁴, Rajsehe Khar Basak², Michael Campbell³⁰, Vicky M. Avery¹, Robert W. Saratigo Ferrer-Bazaga⁸, Francisco Javier Gamo⁶, Paul G. Wyart¹, Didler Leroy¹³, Peter Siggl³, Michael J. Delves⁴, Dennis E. Kyle⁷, Sergio Wittlin³, Jutta Marfurt⁶, Ric N. Price⁵⁻¹⁵, Robert E. Sinden⁴, Elizabeth A. Winzeler⁷, Susan A. Charmani¹⁰, Lidya Bebrevska¹⁰, Davidw Gray⁴, Simon Campbell³, Jalm H. Falramb⁵, Paul A. Willis³, Julian C. Rayner⁷, David A. Fidock²⁵, Kevin D. Read⁸ Ian H. Gilbert⁴

2012

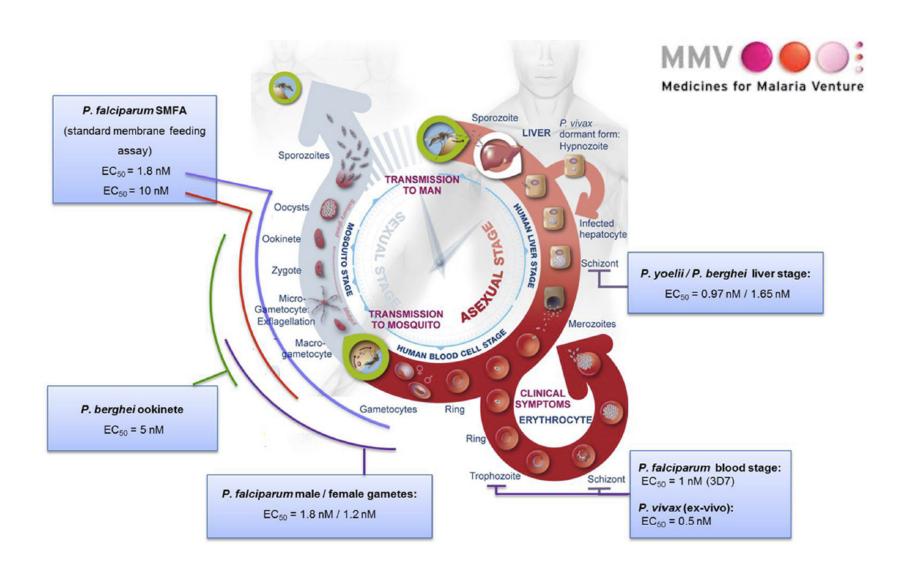
2014

2015



2009

Initial screen for compounds that kill the malaria parasite


Drug lead Declared for MMV Drug candidate DDD498 delivered to MMV

DDD498
Declared MMV
"Project of the Year"
and partnered with
Merck Kga
for pre-clinical and
clinical development

MoA of DDD498 means that compound can cure, ••••• prevent and block transmission

Track record as an infectious diseases drug accelerator

Disease	Lead Optimisation	Preclinical	Clinical
Malaria	1 series BILL & MELINDA GATES foundati	sgc	DDD498 MMV
Leishmaniasis	1 series	2 candidates	Fexinidazole DNDi Drugs for Neglected Diseases initiative
Human African trypanosomiais		1 candidate Westcome DNDi Drugs for Neglected Diseases initiative	
Animal African trypanosomiais			1 drug candidate in vet trials
Chagas' Disease	3 series wellcome		
Cryptosporidiosis	1 series BILL MELINDA GATES foundation	, SGC	
Tuberculosis	A corios VV BILL&MELI	NDA foundation	

INSTITUTIONAL SUPPORT & INTEGRATION

Hit Discovery

Enabling Target-Based Projects Animal Models
PKPD

Chemistry Efficiency & Compound Handling

Public Engagement & Training

Centre Platforms

WELLCOME CENTRE FOR ANTI-INFECTIVES RESEARCH

Scientific:
PI Salaries
PhD Studentships &
Training Program, PhD &
Post-doc Associations

Core Technologies:
Proteomics, FACS
High-Performance
Computing
X-ray, NMR etc.

Technical & Admin:
Lab management
& maintenance,
Technicians, Financial
and Secretarial admin.

Institutional Pillars of Support

University of Dundee, School of Life Sciences (committed to translational research)

Wellcome Centre for Anti-**Infectives Research**

INSTITUTIONAL SUPPORT & INTEGRATION

Kinetoplastid **Drug Discovery**

TB **Drug Discovery**

Antibacterial Drug Discovery Accelerator

Anti-infective **Drug Discovery Programmes**

Hit Discovery

Apicomplexan

Drug Discovery

Enabling Target-Based Projects

Animal Models PKPD

Chemistry Efficiency & Compound Handling

Public Engagement & Training

Centre **Platforms**

WELLCOME CENTRE FOR ANTI-INFECTIVES RESEARCH

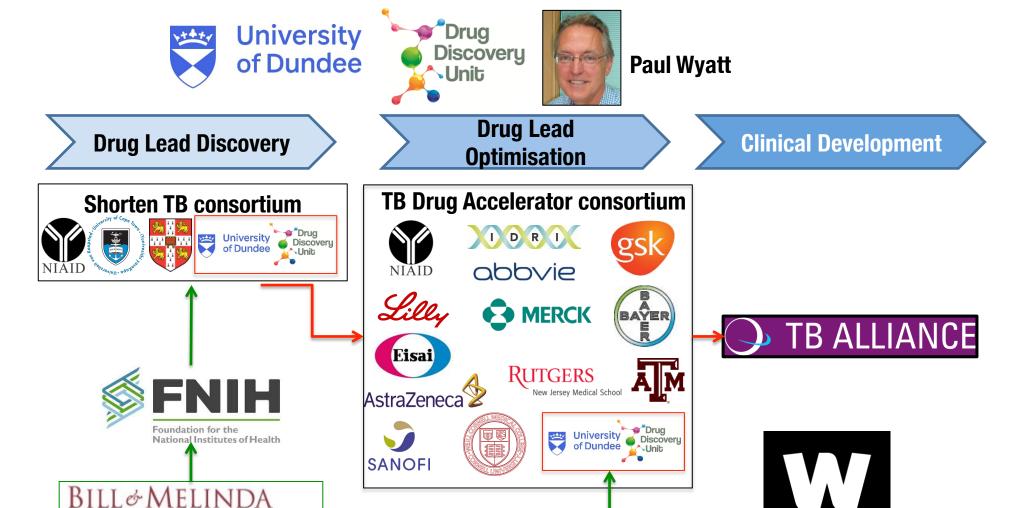
Scientific: PI Salaries PhD Studentships & Training Program, PhD & Post-doc Associations

Core Technologies: Proteomics, FACS High-Performance Computing X-ray, NMR etc.

Technical & Admin: Lab management & maintenance, Technicians, Financial and Secretarial admin.

Institutional **Pillars** of Support

University of Dundee, School of Life Sciences (committed to translational research)



Track record as an infectious diseases drug accelerator

Disease	Lead Optimisation	Preclinical	Clinical
Malaria	1 series BILL & MELINDA GATES founda	sgc	DDD498 MMV
Leishmanias	is 1 series	2 candidates	Fexinidazole DNDi Drugs for Neglected Diseases initiative
Human Africa trypanosomia		1 candidate Unus for Neglected Diseases initiative	
Animal Africa trypanosomia			1 drug candidate in vet trials
Chagas' Disea	ise 3 series		
Cryptosporidic	sis 1 series BILL&MELINDA GATES foundati	on SGC	
Tuberculosis	2 series Welcome BILL & MEI GATE TB ALLIANC	Sfoundation	

The University of Dundee Drug Discovery Unit is a key member of international consortia to deliver new anti-TB drugs

wellcome

GATES foundation

Current (and aspiration for future) capacity in antibacterials

Current

Current Antibacterial Team (8)

- 3 medicinal chemistry FTE
- 5 other FTF
- Part of larger portfolio team
- Funding: MRC/ UoD
- (Targets from Bristol, Exeter, Glasgow, Karolinska)

Future

ADDA: Final Team Size (22)

- 1 Team Leader
- 12 medicinal chemistry FTE
- 2 DMPK FTE
- 4 assay developers
- 2 computational chemist
- 1 structural biologist
- Funding: MRC/ Wellcome (£2 M /annum)

TB Team (projected to remain constant in size) (21)

- 14 medicinal chemistry FTE
- 7 other FTE
- Funding: Gates Foundation/ Wellcome (£1.8M /annum)

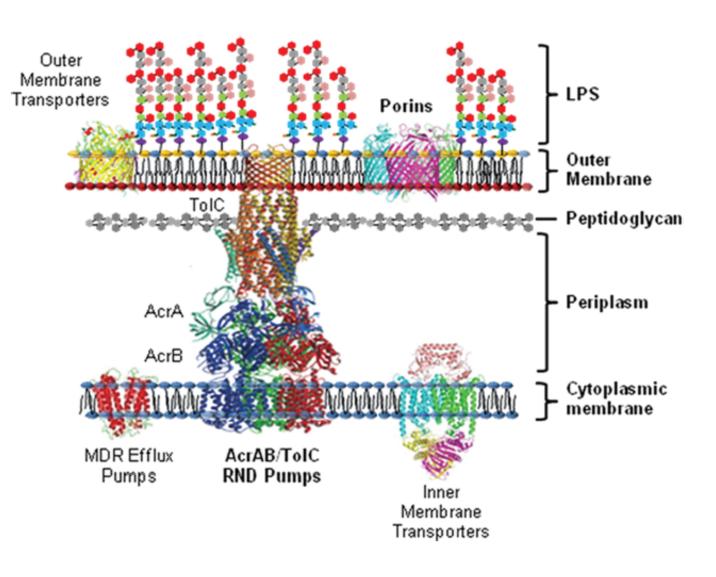
TB Team (projected to remain constant in size) (21)

- 14 medicinal chemistry FTE
- 7 other FTE
- Funding: Gates Foundation/ Wellcome (£1.8M /annum)

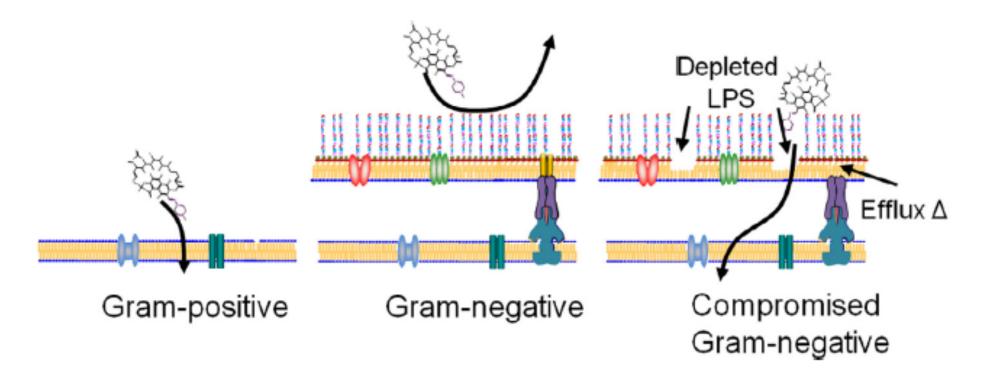
Grand Totals

29 FTE

43 FTE


Drug uptake and efflux. Drug uptake and efflux.

The four horsemen of the apocalypse!


Orthogonal selectivity of outer and inner membranes

Efflux systems across both

Why is it so hard to kill GNBs?

L. L. Silver/Bioorg. Med. Chem. xxx (2016) xxx-xxx

An Antibacterial Drug Discovery Accelerator for the community

Discovery Microbiology

- New Targets
- Phenotypic assays
- Reporter cell assays
- Active compounds

e.g. Bristol, Cambridge, Dundee, Exeter, Glasgow, Imperial, Karolinska, LSHTM, Oxford, Sanger, Sheffield, St Andrews, Warwick

CO-ADD

Community for Open Antibacterial Drug Discovery

Target-based Screen

Cell Activity Animal Efficacy

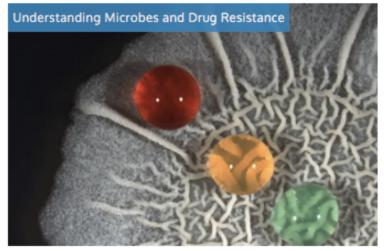
Drug Leads

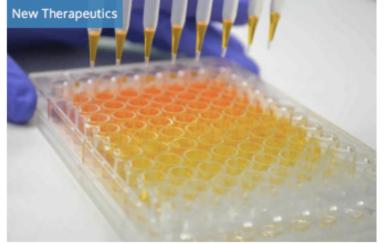
Partnering or Licensing

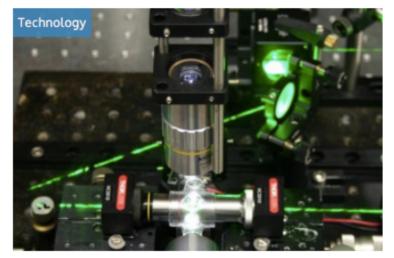
- Pharma Partners
- PDPs (eg GARDP)
- AMR Centre
- CARB-X / IMI

Additional funding

(eg MRC DPFS / WT) with/ without industrial partners


Spinout companies





CENTRE OF ANTIMICROBIAL RESISTANCE

University of Dundee & NHS Tayside

Prof Dilip Nathwani OBE, Consultant in Infectious Diseases and Honorary Professor of Infection at the University of Dundee.

Antimicrobial stewardship

Co-Director of:

Acknowledgements

Thanks to all my colleagues for allowing me to present their work

Thanks to all the funding agencies, and our PDP and Pharma partners that enable us to tackle infectious diseases

